Frontiers in Generative Modeling

March 11 <u>Tailin Wu</u>, Westlake University Website: <u>ai4s.lab.westlake.edu.cn/course</u>

Image from: OpenAl

Class 1: A bird-eye view of deep learning

X

Tasks

- Classification/
 regression
- Simulation
- Inverse design/ inverse problem
- Control/planning

Neural architecture

- Multilayer perceptron
- Graph Neural Networks
- Convolutional Neural Networks
- Transformers

Learning paradigm

- Supervised learning
- Generative modeling
- Foundation models

Х

- Reinforcement learning
- Evolutionary and multiobjective optimization

Application (AI & Science)

- Robotics
- Games (e.g., Go, atari)
- Autonomous Driving
- PDEs

- Life science
- Materials science

Class 2: Deep learning fundamentals

- 1. Principle 1: Model a hard transformation by composing simple transformations:
 - Multilayer Perceptron (MLP)
 - Backpropagation
- 2. Principle 2: Directly optimizing the final objective using maximum likelihood and information theory:
 - Maximum likelihood: MSE, uncertainty estimation
 - Information: cross-entropy, Information Bottleneck
- 3. Optimization
 - Adam: combining momentum and per-dimension magnitude
 - SAM (sharpness-aware minimization): $\max_{\epsilon \in N_{\theta}} \ell(\theta + \epsilon)$ finds flat and robust minima
 - Federative learning: improves the data privacy by only sharing client models

Generative modeling

Images and shapes generated by diffusion models:

By MeshDiffusion [1]

4

By DallE 2

Generative modeling

Robotic policy by diffusion models [1]

Text to video generation by Sora [2]

[1] Fu, Zipeng, Tony Z. Zhao, and Chelsea Finn. "Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation." *arXiv preprint arXiv:2401.02117* (2024).
[2] OpenAI team. "Video generation models as world simulators", 2024

Outline

- Generative models
 - VAE
 - GAN
 - Energy-based models
 - Diffusion models
 - Flows
- Application of diffusion models
 - Image, video, and shape generation
 - Simulation
 - Inverse design/inverse problem
 - Control/planning

Preliminary: Jensen's inequality

For a convex function f(x), given $t \in [0,1]$, we have:

 $f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$

More generally, let *X* be a random variable, we have $f \text{ convex: } f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$ $f \text{ concave: } f(\mathbb{E}[X]) \geq \mathbb{E}[f(X)]$ Equality holds when f(x) is a linear function, or the variable *X* is a constant

Preliminary: KL divergence

KL divergence measures how one probability distribution P is different from a second, reference probability distribution Q.

$$\mathbb{D}_{KL}(P||Q) = \mathbb{E}_{x \sim P(x)} \left[\log \frac{P(x)}{Q(x)} \right]$$

P: data; *Q*: a model (typically)

 $\mathbb{D}_{KL}(P||Q)$: The average difference of the number of bits required for encoding samples of *P* using a code optimized for *Q* rather than one optimized for P

Properties:

- 1. $\mathbb{D}_{KL}(P||Q) \ge 0$
- 2. When P(x) and Q(x) are identical, $\mathbb{D}_{KL}(P||Q) = 0$

Preliminary: Proving non-negative of KL divergence

Proving $\mathbb{D}_{KL}(P||Q) \ge 0$:

 $\mathbb{D}_{KL}(P||Q)$ = $\mathbb{E}_{x \sim P(x)} \left[-\log \frac{Q(x)}{P(x)} \right]$ $\geq -\log \mathbb{E}_{x \sim P(x)} \left[\frac{Q(x)}{P(x)} \right]$ = $-\log \int P(x) \frac{Q(x)}{P(x)} dx$

f convex: $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$

 $-\log(x)$ is a convex function

= 0

Equality holds when
$$\frac{Q(x)}{P(x)}$$
 is a **constant**, i.e., $P(x) \equiv Q(x)$.

Generative models

What makes a generative model?

Given many examples of the input *X*, learn a probability model $p_{\theta}(X)$ that can **sample** new instances of *X* that conform to the data distribution.

- Sampling (required)
- Computing the probability of a sample (optional)

Generative model 1: Variational autoencoder

Given $\{x_i\}_{i=1}^N$, learn a probability model $p_{\theta}(x)$ that maximizes the likelihood of data

$$\begin{split} &\log p_{\theta}(\boldsymbol{x}_{i}) \\ &\geq \mathcal{L}(\phi, \theta; \boldsymbol{x}_{i}) \coloneqq \log p_{\theta}(\boldsymbol{x}_{i}) - \underline{\mathbb{D}_{KL}}\left(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})||p_{\theta}(\boldsymbol{z}|\boldsymbol{x}_{i})\right) \\ &= \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})}[\log p_{\theta}(\boldsymbol{x}_{i})] - \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})}\left[\log \frac{q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})}{p_{\theta}(\boldsymbol{z}|\boldsymbol{x}_{i})}\right] \\ &= \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})}\left[\log \frac{p_{\theta}(\boldsymbol{x}_{i})p_{\theta}(\boldsymbol{z}|\boldsymbol{x}_{i})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})}\right] \\ &= \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})}\left[\log \frac{p_{\theta}(\boldsymbol{z})p_{\theta}(\boldsymbol{x}_{i}|\boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})}\right] \\ &= \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})}\left[\log p_{\theta}(\boldsymbol{x}_{i}|\boldsymbol{z})] - \mathbb{D}_{KL}\left[q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})||p_{\theta}(\boldsymbol{z})\right] \end{split}$$

 $\mathcal{L}(\phi, \theta; \mathbf{x}_i)$ is called Evidence Lower BOund (ELBO)

 \widehat{x}

Ζ

X

 $p_{\theta}(\boldsymbol{x}_i|\boldsymbol{z})$

 $q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_i)$

Variational autoencoder: From Jensen's inequality

Derivation using Jensen's inequality

$$\begin{split} &\log p_{\theta}(\boldsymbol{x}_{i}) \\ &= \log \int q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i}) \frac{p_{\theta}(\boldsymbol{x}_{i},\boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})} d\boldsymbol{z} \\ &= \log \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})} \left[\frac{p_{\theta}(\boldsymbol{x}_{i},\boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})} \right] \\ &\geq \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}}\left(\boldsymbol{z}|\boldsymbol{x}_{i} \right) \left[\log \frac{p_{\theta}(\boldsymbol{x}_{i}|\boldsymbol{z})p_{\theta}(\boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})} \right] \\ &= \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}}(\boldsymbol{z}|\boldsymbol{x}_{i}) \left[\log p_{\theta}(\boldsymbol{x}_{i}|\boldsymbol{z}) \right] - \mathbb{D}_{KL} \left[q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i}) || p_{\theta}(\boldsymbol{z}) \right] \end{split}$$

Equality holds when $\frac{p_{\theta}(x_i, z)}{q_{\phi}(z|x_i)} = p_{\theta}(x_i) \frac{p_{\theta}(z|x_i)}{q_{\phi}(z|x_i)}$ is a **constant** w.r.t. *z*, i.e., $q_{\phi}(z|x_i) \equiv p_{\theta}(z|x_i)$

Variational autoencoder: Properties

- It can sample new examples of *x*
- Can learn structured latent representation, given prior knowledge of $p_{\theta}(z)$
- Cannot compute the likelihood of data

Generative model 2: Generative Adversarial Networks (GAN)

We want to learn a classifier $q_{\theta}(y|\mathbf{x}) = \begin{cases} q_{\theta}(y=1|\mathbf{x}) \coloneqq D_{\theta}(\mathbf{x}), & y=1\\ q_{\theta}(y=0|\mathbf{x}) \coloneqq 1 - D_{\theta}(\mathbf{x}), & y=0 \end{cases}$ for true and fake data.

We maximize the negative cross-entropy:

$$\max_{D_{\theta}} V(D_{\theta}) = \mathbb{E}_{x \sim p_{data}(x)} [\log q_{\theta} (y = 1 | \mathbf{x})] + \mathbb{E}_{x \sim p_{gen}(x)} [\log q_{\theta} (y = 0 | \mathbf{x})]$$
$$= \mathbb{E}_{x \sim p_{data}(x)} [D_{\theta}(\mathbf{x})] + \mathbb{E}_{x \sim p_{gen}(x)} [1 - D_{\theta}(\mathbf{x})]$$

What if we also want to generate a distribution similar to $p_{data}(x)$?

Generative model 2: Generative Adversarial Networks (GAN)

$$\min_{G_{\phi}} \max_{D_{\theta}} V(D_{\theta}, G_{\phi}) = \mathbb{E}_{\boldsymbol{x} \sim p_{data}(\boldsymbol{x})}[D_{\theta}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}\left[1 - D_{\theta}\left(G_{\phi}(\boldsymbol{z})\right)\right]$$

Generative model 3: Energy-based models (EBM)

$$p_{\theta}(\boldsymbol{x}) = \frac{\exp(-E_{\theta}(\boldsymbol{x}))}{Z_{\theta}}$$

- $E_{\theta}(x)$ is an energy function that maps the input x to a scalar energy. The lower the $E_{\theta}(x)$, the higher the probability $p_{\theta}(x)$.
- $Z_{\theta} = \int \exp(-E_{\theta}(x)) dx$ is a normalizing constant that is intractable.

Energy-based model: Inference

Stochastic Gradient Langevin Dynamics:

$$\boldsymbol{x}^{k+1} \leftarrow \boldsymbol{x}^k - \frac{\lambda}{2} \nabla_{\boldsymbol{x}} E_{\theta}(\boldsymbol{x}) + \sqrt{\lambda} \boldsymbol{z}^k$$

where $\boldsymbol{z}^k \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}), k = 1, 2, ... K$

Essentially: gradient descent with noise on the learned energy function $E_{\theta}(x)$.

When $\lambda \to 0, K \to +\infty$, the generated samples converge to $p_{\theta}(\mathbf{x}) = \frac{\exp(-E_{\theta}(\mathbf{x}))}{Z_{\theta}}$ Energy landscape $E_{\theta}(x)$

Energy-based model: Training with contrastive divergence

Contrastive divergence:

$$\nabla_{\theta} [-\log p_{\theta}(\boldsymbol{x})] = \nabla_{\theta} E_{\theta}(\boldsymbol{x}) + \nabla_{\theta} \log Z_{\theta}$$
$$= \nabla_{\theta} \underline{E}_{\theta}(\boldsymbol{x}) - \mathbb{E}_{\boldsymbol{x} \sim p_{\theta}(\boldsymbol{x})} [\nabla_{\theta} \underline{E}_{\theta}(\boldsymbol{x})]$$

energy for data samples

energy for negative samples (generated by $p_{\theta}(x)$)

Energy landscape $E_{\theta}(x)$

Push down energy for data samples

Energy-based model: Relation to GAN

EBM:

$$\nabla_{\theta} [-\log p_{\theta}(\boldsymbol{x})] = \nabla_{\theta} E_{\theta}(\boldsymbol{x}) + \nabla_{\theta} \log Z_{\theta}$$
$$= \nabla_{\theta} \underline{E}_{\theta}(\boldsymbol{x}) - \mathbb{E}_{\boldsymbol{x} \sim p_{\theta}(\boldsymbol{x})} [\nabla_{\theta} \underline{E}_{\theta}(\boldsymbol{x})]$$

energy for data samples

energy for negative samples (generated by $p_{\theta}(x)$)

GAN:

$$\min_{G_{\phi}} \max_{D_{\theta}} V(D_{\theta}, G_{\phi}) = \mathbb{E}_{\boldsymbol{x} \sim p_{data}(\boldsymbol{x})}[D_{\theta}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}\left[1 - D_{\theta}\left(G_{\phi}(\boldsymbol{z})\right)\right]$$

GAN can be think of as a kind of EBM where the discriminator $E_{\theta}(x)$ is both used for discrimination as $D_{\theta}(x)$ and generation as $G_{\phi}(z)$.

Energy-based model: Compositional generation

Let $p_1(\mathbf{x}) \propto e^{-E_1(\mathbf{x})}, p_2(\mathbf{x}) \propto e^{-E_2(\mathbf{x})}$ $\Rightarrow p_1(\mathbf{x})p_2(\mathbf{x}) \propto e^{-(E_1(\mathbf{x})+E_2(\mathbf{x}))}$

Product of probability corresponds to summation of the respective energy functions [1].

⇒ Allows inference-time generalization

 [1] Du, Yilun, Shuang Li, and Igor Mordatch.
 "Compositional visual generation with energy based models." *NeurIPS* 2020: 6637-6647.

Generative model 4: Diffusion model

Insight: to construct a complex mapping from A to B, it is much easier to compose simple mappings

Diffusion model: Encoder

Recall VAE:

$$\mathsf{ELBO} = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - \mathbb{D}_{KL}[q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p_{\theta}(\boldsymbol{z})]$$

Let $z \coloneqq x^{(1:T)}$, we define a unlearnable encoder:

$$q(\mathbf{z}|\mathbf{x}^{(0)}) = q(\mathbf{x}^{(1:T)}|\mathbf{x}^{(0)}) = \prod_{t=1}^{T} q(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)})$$

where
$$q(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)}) = \mathcal{N}(\mathbf{x}^{(t)}; \sqrt{1-\beta_t}\mathbf{x}^{(t-1)}, \beta_t \mathbf{I})$$

Diffusion model: Decoder

We define a learnable decoder:

$$p_{\theta}(\boldsymbol{x}^{(0)}, \boldsymbol{z}) = p(\boldsymbol{x}^{(T)}) \prod_{t=1}^{T} p_{\theta}(\boldsymbol{x}^{(t-1)} | \boldsymbol{x}^{(t)})$$

where $p_{\theta}(\boldsymbol{x}^{(t-1)} | \boldsymbol{x}^{(t)}) = \mathcal{N}(\boldsymbol{x}^{(t-1)}; \mu_{\theta}(\boldsymbol{x}^{(t)}, t), \tilde{\beta}_{t}\boldsymbol{I})$

Denoising Diffusion Probabilistic Models (DDPM) [1]

Maximizing the ELBO is equivalent to minimizing:

$$L = \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \left(\sqrt{\overline{\alpha}_{t}} \boldsymbol{x}^{(0)} + \sqrt{1 - \overline{\alpha}_{t}} \boldsymbol{\epsilon}, t \right) \right\| \right]$$

Training:

Algorithm 1 Training

1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\overline{\alpha}_t} \boldsymbol{x}^{(0)} + \sqrt{1 - \overline{\alpha}_t} \boldsymbol{\epsilon}, t) \|$ 6: **until** converged

 $x^{(0)}$ adding t steps of noise

Inference (sampling):

Algorithm 2 Sampling

1:
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

2: for $t = T, \dots, 1$ do
3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = \mathbf{0}$
4: $\mathbf{x}^{(t-1)} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}^{(t)} - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}^{(t)}, t) \right) + \sigma_t \mathbf{z}$
5: end for
6: return $\mathbf{x}^{(0)}$ denoise step-by-step

DDPM as Energy-based model

Diffusion model essentially learns a "energy"-based model $E_{\theta}(x; t)$ to model the probability distribution

$$p_{\theta}(\boldsymbol{x};t) = \frac{1}{Z_{\theta}} e^{-E_{\theta}(\boldsymbol{x};t)}$$

The denoising function $\epsilon_{\theta}(x^{(t)}, t)$ is essentially the gradient of the energybased model:

$$\boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}^{(t)}, t) = \nabla_{\boldsymbol{x}} E_{\theta}(\boldsymbol{x}; t) = -\nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x}; t)$$

$$\widehat{\boldsymbol{x}}^{(0)} = \operatorname{argmin}_{\boldsymbol{x}} E_{\theta}(\boldsymbol{x}; t)$$

DDPM: classifier-based conditional generation

Suppose that we have trained p(y|x), and want to generate p(x|y).

Bayes rule:

$$p(\mathbf{x}|y;t) = \frac{p(\mathbf{x};t)p(y|\mathbf{x})}{p(y;t)}$$

We have

 $\nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x}|\boldsymbol{y};t)$ = $\nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x};t) + \nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{y}|\boldsymbol{x})$ = $-\nabla_{\boldsymbol{x}} E_{\theta}(\boldsymbol{x};t) + \nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{y}|\boldsymbol{x})$

DDPM: classifier-based conditional generation

DDPM: classifier-based conditional generation

DDPM: classifier-based inverse design

Suppose we have pre-specified inversedesign objective $\mathcal{J}(x)$ we want to minimize:

$$\begin{aligned} \boldsymbol{x}^{(t-1)} &= \frac{1}{\sqrt{\alpha_t}} \left(\boldsymbol{x}^{(t)} - \frac{1 - \alpha_t}{\sqrt{1 - \overline{\alpha}_t}} \left(\epsilon_{\theta} \left(\boldsymbol{x}^{(t)}, t \right) + \nabla_{\boldsymbol{x}} \mathcal{J}(\boldsymbol{x}) \right) \right) \\ &+ \sigma_t \boldsymbol{z} \end{aligned}$$

Adding guidance

E.g. shape design of the airplane to minimize drag

Flow: Normalizing flow

Given prior density $p_z(z)$ and an invertible function ϕ , $x = \phi(z)$, we have

$$\int p_z(z)dz = \int p_x(x)dx = 1$$

 $\Leftrightarrow p_{z}(z)dz = p_{x}(x)dx$ The probability mass is conserved under change of variable $\Leftrightarrow p_{x}(x) = p_{z}(z) \left| \frac{dx}{dz} \right|^{-1} = p_{z}(z) \left| \frac{d\phi(z)}{dz} \right|^{-1}$

Generalizing to multivariate variables x and z, we have

$$\log p_{\mathbf{x}}(\mathbf{x}) = \log p_{\mathbf{z}}(\mathbf{z}) - \log \det \frac{\partial \boldsymbol{\phi}(\mathbf{z})}{\partial \mathbf{z}}$$

Flow: Normalizing flow

Normalizing flow $\phi_t(x)$

- ϕ_t : an invertible, differentiable function
- $p_T(\mathbf{x})$: real data
- $p_0(x)$: prior, e.g. Gaussian

ormalizing flow
$$\phi_t(x)$$

 ϕ_t : an invertible, differentiable function
 $p_T(x)$: real data
 $p_0(x)$: prior, e.g. Gaussian
 $\log p_{t+1}(x) = \log p_t(x) - \log \det \left[\frac{\partial \phi_t(x)}{\partial x}\right], t = 1, 2 \dots T$

Design the layers ϕ_t in a way that is invertible and easy to compute det $\left|\frac{\partial \phi_t(x)}{\partial x}\right|$, e.g., upper triangular

Neural ODE: Continuous normalizing flow [1]

[1] Chen, Ricky TQ, et al. "Neural ordinary differential equations." NeurIPS 2018

Normalizing direction

Making the layers ϕ_t continuous w.r.t. t

- The flow ϕ_t is an transformation on the variable x at layer $t \in [0,1]$.
- $v_t(\cdot, \theta)$ is a field that determines the dynamics of the flow ϕ_t w.r.t. t.
- The flow $\phi_t(\mathbf{x})$ uniquely defines a probability density path $p_t(\mathbf{x}) = \phi_t \circ \phi_{t-dt} \circ \cdots \circ \phi_0 p_0(\mathbf{x}) = [\phi_t] p_0(\mathbf{x})$

Neural ODE: Continuous normalizing flow, learning

Making the layers ϕ_t continuous w.r.t. t

How to learn $v_t(\cdot; \theta)$ such that it can transform a prior distribution $p_0(x)$ to a target distribution $p_{data}(x)$ specified by samples $\{x_i\}_{i=1}^N$?

Adjoint method (simulation-based): generalizing gradient descent, where the gradient w.r.t. θ is another ODE from t = 1 to t = 0.

It is computationally expensive!

[1] Chen, Ricky TQ, et al. "Neural ordinary differential equations." *Advances in neural information processing systems* 31 (2018).

Normalizing direction

Flow matching [1]

Making the layers ϕ_t continuous w.r.t. t

Given a target path $p_t(x)$ and a corresponding vector field $u_t(x)$, we can directly regressing:

$$L_{FM}(\theta) = \mathbb{E}_{t, \mathbf{p}_t(\mathbf{x})}[\|\mathbf{v}_t(\phi_t(\mathbf{x}); \theta) - u_t(\mathbf{x})\|^2]$$

The problem is that we only have data $\{x_i\}_{i=1}^N$ and do not have $p_t(x)$ nor $u_t(x)$.

Normalizing direction

Flow matching

We consider $p_t(\mathbf{x}|\mathbf{x}_1)$, where $\mathbf{x}_1 \sim p_{data}(\mathbf{x})$

The target vector field $u_t(x)$ is a weighted sum of the conditional vector field $u_t(x|x_1)$

The target distribution $p_t(x)$ is a weighted sum of the conditional distribution $p_t(x|x_1)$

$$\mathcal{L}_{CFM}(\theta) = \mathbb{E}_{t \sim U[0,1], \mathbf{x}_1 \sim p_{data}(\mathbf{x}_1), \mathbf{x} \sim p_t(\mathbf{x}|\mathbf{x}_1)} \| v_t(\mathbf{x};\theta) - u_t(\mathbf{x}|\mathbf{x}_1) \|^2$$

Proposition: $\nabla_{\theta} \mathcal{L}_{FM}(\theta) = \nabla_{\theta} \mathcal{L}_{CFM}(\theta)$

Flow matching

We can then explicitly design the vector field $u_t(x|x_1)$, e.g., using optimal transport (OT):

 $\epsilon_{\theta}(\mathbf{x}^{(t)};t)$

t = 0.0 $t = \frac{1}{3}$ $t = \frac{2}{3}$ t = 1.0 t = 1.0 t = 1.0

 $\boldsymbol{u}_t(\boldsymbol{x}|\boldsymbol{x}_1)$

Outline

- Generative models
 - VAE
 - GAN
 - Energy-based models
 - Diffusion models
 - Flows
- Application of diffusion models
 - Image, video, and shape generation
 - Simulation
 - Inverse design/inverse problem
 - Control/planning

Application 1.1: image and video generation

Images and videos generated by diffusion models:

Text to video generation by Sora [2]

By DallE 2 [1]

[1] Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." *arXiv preprint arXiv:2204.06125* 1.2 (2022): 3.
[2] OpenAl team. "Video generation models as world simulators", 2024

48

Application 1.2: 3D shape generation

By G-Shell [1]

By MeshDiffusion [1]

[1] Liu, Zhen, et al. "Meshdiffusion: Score-based generative 3d mesh modeling." *ICLR 2023*[2] Liu, Zhen, et al. "Ghost on the Shell: An Expressive Representation of General 3D Shapes." *ICLR* 2024

Task 2: (Learning) simulation

Goal: learn the mapping f_{θ} from u^t to u^{t+1} :

u^t: original state (状态) of the system. Can be a graph (e.g., mesh, particle-based systems, molecules), a tensor, or an infinite-dimensional function u(t, x) as solution to a PDE

 $f_{ heta}$: neural surrogate models(神经网络代理模型)

m^t: external control (外界控制)

a: static parameters (静态参数) of the system that does not change with time (e.g. parameters of PDE, spatially varying diffusion coefficient)

 ∂X : **boundary condition**(边界条件) of the system

PDE: partial differential equation ODE: ordinary differential equation 50

Tasks 3 & 4: Inverse design, inverse problem, and control

u^t: original **state** of the system. Can be an infinite-dimensional function u(t, x) as solution to a PDE, or a graph (e.g., mesh, particle-based systems, molecules)

 f_{θ} : neural surrogate models

 m^t: external control (外界控制)
 } control (控制)

 a: static parameters (静态参数) of the system that does not change with time (e.g. parameters of PDE, spatially varying diffusion coefficient)
 } inverse design (反向设计)

 ∂X: boundary condition (边界条件) of the system

Tasks 3 & 4: Inverse design, inverse problem, and control

 Inverse design: boundary ∂X, initial condition u⁰, parameter a to optimize design objective: plane design, rocket shape, underwater robot shape

• Inverse problem : infer initial condition u^0 or parameter a to match prediction with observation

• Control: optimize control m^t to optimize control objectives: controlled nuclear fusion, robotics

Application 2.1: Simulation for PDE

For simulation (仿真):

Learn $P(u^{[1,T]}|u^0)$:

[1] Cachay, Salva Rühling, et al. "DYffusion: A Dynamics-informed Diffusion Model for Spatiotemporal Forecasting." NeurIPS 2023, *arXiv preprint arXiv:2306.01984* (2023).

Application 2.2: Physics-informed simulation

Physics-informed diffusion models:

Key idea: using the PDE residual as additional term for the objective J(x).

[1] Shu, Dule, Zijie Li, and Amir Barati Farimani. "A physics-informed diffusion model for high-fidelity flow field reconstruction." *Journal of Computational Physics* 478 (2023): 111972.

 $\widehat{\boldsymbol{x}}^{(0)} = \operatorname{argmin}_{\boldsymbol{x}} (E_{\theta}(\boldsymbol{x}; t) + \mathcal{J}(\boldsymbol{x}))$

Equation loss

Application 2.3: Molecular dynamics simulation [1]

[[1] Wu, Fang, and Stan Z. Li. "DIFFMD: a geometric diffusion model for molecular dynamics simulations." AAAI 2023

Application 3.1: Inverse problem

Given sparse observations, infer the full state, or parameters *a*

Holzschuh, Benjamin, Simona Vegetti, and Nils Thuerey. "Solving Inverse Physics Problems with Score Matching." *NeurIPS* 2023

Application 3.2: inverse design

Treat all the variables as a single variable $(U_{[0,T]}, \gamma)$ and learn to generate simultaneously

Application 3.2: Compositional inverse design: definition

Given objective $J(U(\gamma), \gamma)$, find design parameters γ that minimize J, where the parameters γ and/or the state U are more complex than in training.

For example: **Training:** we only see how the fluid interacts with each <u>part</u> of the airplane

Test: design the <u>whole</u> airplane shape

Application 3.2: CinDM method

[1] **Wu, Tailin**, et al. "Compositional Generative Inverse Design." ICLR 2024 spotlight

 $U_{[0,T]}$: state sequence γ : boundary condition

In inference, can also compose multiple E_{θ} on subsets of variables

Application 3.2: CinDM method, part-to-whole generalization

Inference: consider **multiple airfoils**, maximize life-to-drag ratio: $(=\frac{lift}{drag})$

Example of Lily-Pad simulation

Compositional design results of our method in 2D airfoil generation. Each row represents an example. We show the heatmap of velocity in horizontal and vertical direction and pressure in the initial time step, ₆₀ inside which we plot the generated airfoil boundaries.

Application 3.2: CinDM method, part-to-whole generalization

(a) Formation flying of airfoils A and B

(b) Single flying of airfoil A

(c) Single flying of airfoil B

Our model discovers formation flying (编队飞行)

- Reducing the drag by 53.6%
- increasing the lift-to-drag ratio by 66.1%

Application 3.3: Protein design

De novo protein design [1]:

Reverse (generative) process

[1] Watson, Joseph L., et al. "De novo design of protein structure and function with RFdiffusion." *Nature* 620.7976 (2023): 1089-1100.

Application 4.1: Planning [1]

For agent interacting with an environment with action sequence $\{a_t\}$, envionment state $\{s_t\}$:

[1] Janner, Michael, et al. "Planning with diffusion for flexible behavior synthesis." *ICML 2022*

Application 4.2: Diffusion Policy [1]

For agent interacting with an environment with action sequence $\{a_t\}$, envionment state $\{s_t\}$:

[1] Chi, Cheng, et al. "Diffusion policy: Visuomotor policy learning via action diffusion." *arXiv preprint arXiv:2303.04137* (2023).

Other applications

- Algorithm: Diffusion models as plug-and-play priors, NeurIPS 2022
- Finetuning: ControlNet: Adding Conditional Control to Text-to-Image Diffusion Models
- Inpainting: <u>RePaint: Inpainting using Denoising Diffusion Probabilistic Models</u>
- Graph generation: <u>Autoregressive Diffusion Model for Graph Generation</u>, ICML 2023
- Antibody generation: <u>Antigen-Specific Antibody Design and Optimization with Diffusion-Based</u> <u>Generative Models for Protein Structures</u>, NeurIPS 2022
- Material generation: <u>Crystal Diffusion Variational Autoencoder for Periodic Material Generation</u>, ICLR 2022
- Composing video sequences: <u>Synthesizing Long-Term Human Motions with Diffusion Models via</u>
 <u>Coherent Sampling</u>
- Point cloud generation: Point-E: A System for Generating 3D Point Clouds from Complex Prompts

Faster diffusion (1-8 steps):

- Progressive distillation for fast sampling of diffusion models, ICLR 2022
- On distillation of guided diffusion models, CVPR 2023
- SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two Seconds, NeurIPS 2023

Summary

- Generative models
 - VAE
 - GAN
 - Energy-based models
 - Diffusion models
 - Flows
- Application of diffusion models
 - Image, video, and shape generation
 - Simulation
 - Inverse design/inverse problem
 - Control/planning

Useful materials

- Diffusion models (DDPM): "<u>Denoising diffusion probabilistic</u> <u>models</u>." NeurIPS 2020
- DDPM tutorial: <u>https://lilianweng.github.io/posts/2021-07-11-diffusion-models/</u>
- DDPM code: https://github.com/lucidrains/denoising-diffusion-pytorch
- Flow matching: <u>"Flow matching for generative modeling."</u> ICLR 2022