
Frontiers in Generative Modeling

1

March 11
Tailin Wu, Westlake University
Website: ai4s.lab.westlake.edu.cn/course

Image from: OpenAI

https://tailin.org/
http://ai4s.lab.westlake.edu.cn/course

Class 1: A bird-eye view of deep learning

2

• Classification/
regression

• Simulation
• Inverse design/

inverse problem
• Control/planning

Tasks

• Supervised learning
• Generative modeling
• Foundation models
• Reinforcement learning
• Evolutionary and multi-

objective optimization

Learning paradigm

×

Application (AI & Science)

• Robotics
• Games (e.g., Go, atari)

• Autonomous Driving
• PDEs

• Life science
• Materials science

• Multilayer perceptron
• Graph Neural

Networks
• Convolutional Neural

Networks
• Transformers

Neural architecture

×

3

1. Principle 1: Model a hard transformation by composing simple transformations:
• Multilayer Perceptron (MLP)
• Backpropagation

2. Principle 2: Directly optimizing the final objective using maximum likelihood
and information theory:
• Maximum likelihood: MSE, uncertainty estimation
• Information: cross-entropy, Information Bottleneck

3. Optimization
• Adam: combining momentum and per-dimension magnitude
• SAM (sharpness-aware minimization): finds flat and robust minima
• Federative learning: improves the data privacy by only sharing client models

Class 2: Deep learning fundamentals

Images and shapes generated by diffusion models:

By DallE 2 By MeshDiffusion [1]

[1] Liu, Zhen, et al. "Meshdiffusion: Score-based generative 3d mesh modeling." ICLR 2023 4

Generative modeling

Robotic policy by diffusion models [1]

[1] Fu, Zipeng, Tony Z. Zhao, and Chelsea Finn. "Mobile ALOHA: Learning Bimanual Mobile
Manipulation with Low-Cost Whole-Body Teleoperation." arXiv preprint arXiv:2401.02117 (2024).
[2] OpenAI team. “Video generation models as world simulators”, 2024

5

Text to video generation by Sora [2]

Generative modeling

• Generative models
• VAE
• GAN
• Energy-based models
• Diffusion models
• Flows

• Application of diffusion models
• Image, video, and shape generation
• Simulation
• Inverse design/inverse problem
• Control/planning

6

Outline

Generative models

7

Maximum
likelihood

VAE

Diffusion
models Flow

Energy-based
modelsGAN

Information (KL-
divergence)

Preliminary: Jensen’s inequality

8

For a convex function 𝑓(𝑥), given 𝑡 ∈ 0,1 , we have:

𝑓 𝑡𝑥! + 1 − 𝑡 𝑥" ≤ 𝑡𝑓 𝑥! + 1 − 𝑡 𝑓 𝑥"

More generally, let 𝑋 be a random variable, we have
 𝑓 convex: 𝑓 𝔼 𝑋 ≤ 𝔼 𝑓(𝑋)
 𝑓 concave: 𝑓 𝔼 𝑋 ≥ 𝔼 𝑓(𝑋)
Equality holds when 𝑓 𝑥 is a linear function, or the variable 𝑋 is a constant

Preliminary: KL divergence

9

KL divergence measures how one probability distribution 𝑃 is different from a second,
reference probability distribution 𝑄.

𝔻!" 𝑃||𝑄 = 𝔼#∼% # log
𝑃 𝑥
𝑄 𝑥

Properties:
1. 𝔻#$ 𝑃||𝑄 ≥ 0
2. When 𝑃(𝑥) and 𝑄 𝑥 are identical, 𝔻#$ 𝑃||𝑄 = 0

𝑃: data; 𝑄: a model (typically)
𝔻#$ 𝑃||𝑄 : The average difference of the number of bits required for encoding samples
of 𝑃 using a code optimized for 𝑄 rather than one optimized for P

Preliminary: Proving non-negative of KL divergence

10

𝔻!" 𝑃||𝑄

= 𝔼#∼% # − log
𝑄 𝒙
𝑃 𝒙

≥ − log𝔼#∼% #
𝑄 𝒙
𝑃 𝒙

= − log.𝑃 𝑥
𝑄 𝒙
𝑃 𝒙 𝑑𝑥

= 0

Proving 𝔻#$ 𝑃||𝑄 ≥ 0:

𝑓 convex: 𝑓 𝔼 𝑋 ≤ 𝔼 𝑓(𝑋)

− log 𝑥 is a convex function

Equality holds when % 𝒙
' 𝒙

	is a constant, i.e., 𝑃 𝒙 ≡ 𝑄 𝒙 .

Generative models

11

What makes a generative model?

Given many examples of the input 𝑋, learn a probability model 𝑝((𝑋) that can
sample new instances of 𝑋 that conform to the data distribution.
• Sampling (required)
• Computing the probability of a sample (optional)

input 𝑋 𝑝"(𝑋) ?

• image
• video
• graph
• time series
• natural

language
• …

Probability model

Generative models

12

Maximum
likelihood

VAE

Diffusion
models Flow

Energy-based
modelsGAN

Information (KL-
divergence)

≥ ℒ 𝜙, 𝜃; 𝒙) ≔ log 𝑝(𝒙) −𝔻#$ 𝑞* 𝒛 𝒙) ||𝑝(𝒛 𝒙)

Generative model 1: Variational autoencoder

13

Given 𝒙))+!
, , learn a probability model 𝑝(𝒙 that maximizes the likelihood of data

log 𝑝(𝒙)

≥ 0

= 𝔼-!(𝒛|𝒙") log 𝑝(𝒙) 𝒛 − 𝔻#$ 𝑞* 𝒛 𝒙) ||𝑝(𝒛

= 𝔼-!(𝒛|𝒙") log
𝑝(𝒛 𝑝(𝒙) 𝒛
𝑞* 𝒛 𝒙)

= 𝔼-!(𝒛|𝒙") log
𝑝(𝒙) 𝑝(𝒛 𝒙)

𝑞* 𝒛 𝒙)

= 𝔼-!(𝒛|𝒙") log 𝑝(𝒙) − 𝔼-!(2|3") log
𝑞* 𝒛 𝒙)
𝑝(𝒛 𝒙)

𝒙

𝒛

𝑞* 𝒛 𝒙)

𝑝(𝒙) 𝒛

A𝒙

ℒ 𝜙, 𝜃; 𝒙) 	is called Evidence Lower BOund (ELBO)

log 𝑝(𝒙)

= logC𝑞*(𝒛|𝒙))
𝑝(𝒙), 𝒛
𝑞*(𝒛|𝒙))

𝑑𝑧

= log𝔼𝒛∼-!(𝒛|𝒙")
𝑝(𝒙), 𝒛
𝑞*(𝒛|𝒙))

≥ 𝔼𝒛∼-!	(𝒛|𝒙") log
6# 𝒙"|𝒛 6# 𝒛
-!(𝒛|𝒙")

= 𝔼𝒛∼-!(𝒛|𝒙") log 𝑝(𝒙) 𝒛 − 𝔻#$ 𝑞* 𝒛 𝒙) ||𝑝(𝒛

Variational autoencoder: From Jensen’s inequality

14

Derivation using Jensen’s inequality

𝑓 concave: 𝑓 𝔼 𝑋 ≥ 𝔼 𝑓(𝑋)

Equality holds when 6! 𝒙",𝒛
-#(𝒛|𝒙")

= 𝑝((𝒙))
6! 𝒛|𝒙"
-#(𝒛|𝒙")

 is a constant w.r.t. 𝑧, i.e., 𝑞*(𝒛|𝒙)) ≡ 𝑝(𝒛|𝒙)

𝒙

𝒛

𝑞* 𝒛 𝒙)

𝑝(𝒙) 𝒛

A𝒙

Variational autoencoder: Properties

15

• It can sample new examples of 𝒙
• Can learn structured latent representation, given

prior knowledge of 𝑝& 𝒛
• Cannot compute the likelihood of data

max
(,*

𝐿 𝜃, 𝜙

= 𝔼2∼-!(𝒛|𝒙") log 𝑝(𝒙) 𝒛
− 𝔻#$ 𝑞* 𝒛 𝒙) ||𝑝(𝒛

𝒙

𝒛

𝑞* 𝒛 𝒙)

𝑝(𝒙) 𝒛

A𝒙

Generative models

16

Maximum
likelihood

VAE

Diffusion
models Flow

Energy-based
modelsGAN

Information (KL-
divergence)

Generative model 2: Generative Adversarial Networks (GAN)

17

We maximize the negative cross-entropy:
max
8#

𝑉 𝐷(= 𝔼3∼6$%&% 𝒙 log 𝑞(𝑦 = 1 𝒙 + 𝔼3∼6'() 3 log 𝑞(𝑦 = 0 𝒙

= 𝔼3∼6$%&% 𝒙 𝐷(𝒙 + 𝔼3∼6'() 𝒙 1 − 𝐷(𝒙

We want to learn a classifier 𝑞(𝑦 𝒙 = M𝑞(𝑦 = 1 𝒙 ≔ 𝐷(𝒙 , 	 𝑦 = 1
𝑞(𝑦 = 0 𝒙 ≔ 1 − 𝐷(𝒙 , 𝑦 = 0 for true and fake data.

What if we also want to generate a distribution similar to 𝑝9:;: 𝒙 ?

Generative model 2: Generative Adversarial Networks (GAN)

18

min
<!

max
8#

𝑉 𝐷(, 𝐺* = 𝔼𝒙∼6$%&% 𝒙 𝐷(𝒙 + 𝔼𝒛∼6𝒛 𝒛 1 − 𝐷(𝐺* 𝒛

data

𝐺$
𝐷%

𝐺+ matches data distribution

Generative models

19

Maximum
likelihood

VAE

Diffusion
models Flow

Energy-based
modelsGAN

Information (KL-
divergence)

Generative model 3: Energy-based models (EBM)

20

𝑝& 𝒙 =
exp −𝐸& 𝒙

𝑍&

• 𝐸(𝒙 is an energy function that maps the input 𝒙 to a scalar energy.
The lower the 𝐸(𝒙 , the higher the probability 𝑝(𝒙 .

• 𝑍(= ∫exp −𝐸(𝒙 𝑑𝒙 is a normalizing constant that is intractable.

Energy-based model: Inference

21

𝒙'() ← 𝒙' −
𝜆
2
∇*𝐸" 𝒙 + 𝜆𝒛'

where 𝒛' ∼ 𝒩 𝟎, 𝑰 , 𝑘 = 1,2, …𝐾

Stochastic Gradient Langevin Dynamics:
Energy landscape 𝐸% 𝒙

Essentially: gradient descent with noise on
the learned energy function 𝐸(𝒙 .

When 𝜆 → 0,𝐾 → +∞, the generated samples
converge to 𝑝(𝒙 = =>? @A! 𝒙

B!

Energy-based model: Training with contrastive divergence

22

∇" − log 𝑝" 𝒙 = ∇"𝐸" 𝒙 + ∇" log 𝑍"
= ∇"𝐸" 𝒙 − 𝔼𝒙∼.! 𝒙 ∇"𝐸" 𝒙

Contrastive divergence:

energy for data samples energy for negative samples
(generated by 𝑝% 𝒙)

Energy landscape 𝐸% 𝒙

Push down energy for
data samples

Push up energy for
negative samples

Energy-based model: Relation to GAN

23

∇" − log 𝑝" 𝒙 = ∇"𝐸" 𝒙 + ∇" log 𝑍"
= ∇"𝐸" 𝒙 − 𝔼𝒙∼.! 𝒙 ∇"𝐸" 𝒙

EBM:

energy for data samples energy for negative samples
(generated by 𝑝% 𝒙)

min
(#

max
)!

𝑉 𝐷& , 𝐺* = 𝔼𝒙∼,&'(' 𝒙 𝐷& 𝒙 + 𝔼𝒛∼,𝒛 𝒛 1 − 𝐷& 𝐺* 𝒛
GAN:

GAN can be think of as a kind of EBM where the discriminator 𝐸(𝒙 is both used for
discrimination as 𝐷(𝒙 and generation as 𝐺* 𝒛 .

Energy-based model: Compositional generation

24

Let 𝑝) 𝒙 ∝ 𝑒01" 𝒙 , 𝑝2 𝒙 ∝ 𝑒01# 𝒙

⇒ 𝑝) 𝒙 𝑝2 𝒙 ∝ 𝑒0 1" 𝒙 (1# 𝒙

Product of probability corresponds to summation of the respective energy functions [1].

[1] Du, Yilun, Shuang Li, and Igor Mordatch.
"Compositional visual generation with energy based
models." NeurIPS 2020: 6637-6647.

⇒	Allows inference-time generalization

Generative models

25

Maximum
likelihood

VAE

Diffusion
models Flow

Energy-based
modelsGAN

Information (KL-
divergence)

Generative models

26

Maximum
likelihood

VAE

Diffusion
models Flow

Energy-based
modelsGAN

Information (KL-
divergence)

Insight: to construct a complex mapping from A to B, it is much easier to
compose simple mappings

Gaussian distribution data distributiondiffusion model

27

Each data sample is a point
in a manifold in a high-
dimensional space 𝑅*

Diffusion model learns how to
go from a random Gaussian
sample to manifold

Generative model 4: Diffusion model

Diffusion model: Encoder

28

Recall VAE:

ELBO = 𝔼-#(𝒛|𝒙) log 𝑝(𝒙 𝒛 − 𝔻#$ 𝑞* 𝒛 𝒙 ||𝑝(𝒛

𝒙

𝒛

𝑞* 𝒛 𝒙

𝑝(𝒙 𝒛

A𝒙

VAE𝒙 C

𝒙(!)

…
𝒙 D

A𝒙(C)

…

A𝒙(!)

𝒛

DDPM

Let 𝒛 ≔ 𝒙 !:D , we define a unlearnable encoder:

𝑞 𝒛 𝒙 C = 𝑞 𝒙 !:D 𝒙 C =T
;+!

D

𝑞 𝒙 ; |𝒙 ;@!

where 𝑞 𝒙 ; |𝒙 ;@! = 𝒩 𝒙 ; ; 1 − 𝛽;𝒙 ;@! , 𝛽;𝑰

Diffusion model: Decoder

29

𝒙

𝒛

𝑞* 𝒛 𝒙

𝑝(𝒙 𝒛

A𝒙

𝒙 C

𝒙(!)

…
𝒙 D

A𝒙(C)

…

A𝒙(!)

𝒛

VAE

DDPM

We define a learnable decoder:

𝑝(𝒙 C , 𝒛 = 𝑝 𝒙 D T
;+!

D

𝑝(𝒙 ;@! |𝒙 ;

where 𝑝(𝒙 ;@! |𝒙 ; = 𝒩 𝒙 ;@! ; 𝜇(𝒙 ; , 𝑡 , M𝛽;𝑰

30

Denoising Diffusion Probabilistic Models (DDPM) [1]

Training:

𝒙 , adding 𝑡 steps of noise

Inference (sampling):

denoise step-by-step
∇- 𝝐 − 𝝐- $𝛼.𝒙 , + 1 − $𝛼.𝝐, 𝑡

Maximizing the ELBO is equivalent to minimizing:
𝐿 = 𝔼𝝐∼𝒩 𝟎,𝑰 𝝐 − 𝝐& D𝛼4𝒙 5 + 1 − D𝛼4𝝐, 𝑡

𝒙 ./0

[1] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising
diffusion probabilistic models." NeurIPS 2020: 6840-6851.

DDPM as Energy-based model

31

Diffusion model essentially learns a
“energy”-based model 𝐸(𝒙; 𝑡 to
model the probability distribution

𝑝(𝒙; 𝑡 =
1
𝑍(
𝑒@A! 𝒙;;

The denoising function 𝝐((𝒙(;), 𝑡) is
essentially the gradient of the energy-
based model:
𝝐(𝒙 ; , 𝑡 = ∇𝒙𝐸(𝒙; 𝑡 = −∇𝒙 log 𝑝(𝒙; 𝑡

@𝒙 4 = argmin𝒙 𝐸" 𝒙; 𝑡

DDPM: classifier-based conditional generation

Increasing log 𝑝% 𝑦 𝒙; 𝑡

Only training 𝐸% 𝒙; 𝑡 Adding it during inference

32

@𝒙 4 = argmin𝒙 𝐸" 𝒙; 𝑡 − log 𝑝" 𝑦 𝒙
Suppose that we have trained
𝑝 𝑦 𝒙 , and want to generate
𝑝 𝒙 𝑦 .

Bayes rule:

𝑝 𝒙 𝑦; 𝑡 =
𝑝 𝒙; 𝑡 𝑝 𝑦 𝒙

𝑝 𝑦; 𝑡

We have
 ∇𝒙 log 𝑝(𝒙 𝑦; 𝑡
= ∇𝒙 log 𝑝(𝒙; 𝑡 + ∇𝒙 log 𝑝(𝑦 𝒙
= −∇3𝐸(𝒙; 𝑡 + ∇𝒙 log 𝑝(𝑦 𝒙

DDPM: classifier-based conditional generation

Increasing log 𝑝% 𝑦 𝒙; 𝑡

Only training 𝐸% 𝒙; 𝑡 Adding it during inference

33

@𝒙 4 = argmin𝒙 𝐸" 𝒙; 𝑡 − log 𝑝" 𝑦 𝒙; 𝑡In inference:

𝒙 $%&

=
1
𝛼$

𝒙 $ −
1 − 𝛼$
1 − &𝛼$

𝜖' 𝒙 $, 𝑡 − ∇𝒙 log 𝑝' 𝑦 𝒙 $

+𝜎$𝒛

Adding classifier-based guidance

DDPM: classifier-based conditional generation

34

Classifier-based generation on ImageNet [1]

[1] Du, Yilun, et al. "Reduce, reuse, recycle: Compositional generation
with energy-based diffusion models and mcmc." ICML 2023

Label 𝑦

DDPM: classifier-based inverse design

Decreasing 𝐽(𝒙)

Only training 𝐸% 𝒙; 𝑡 Adding it during inference

35

@𝒙 4 = argmin𝒙 𝐸" 𝒙; 𝑡 + 𝒥 𝒙
Suppose we have pre-specified inverse-
design objective 𝒥 𝒙 we want to minimize:

𝒙 $%&

=
1
𝛼$

𝒙 $ −
1 − 𝛼$
1 − &𝛼$

𝜖' 𝒙 $, 𝑡 + ∇𝒙𝒥 𝒙

+𝜎$𝒛

Adding guidance

E.g. shape design of the airplane to minimize drag

Generative models

36

Maximum
likelihood

VAE

Diffusion
models Flow

Energy-based
modelsGAN

Information (KL-
divergence)

Can only sample 𝑥, cannot
compute exact probability 𝑝(𝑥

Generative models

37

Maximum
likelihood

VAE

Diffusion
models Flow

Energy-based
modelsGAN

Information (KL-
divergence)

38

Flow: Normalizing flow

Given prior density 𝑝2 𝑧 and an invertible function 𝜙,
𝑥 = 𝜙 𝑧 , we have

T𝑝2 𝑧 𝑑𝑧 = T𝑝3 𝑥 𝑑𝑥 = 1

⇔ 𝑝2 𝑧 𝑑𝑧 = 𝑝3 𝑥 𝑑𝑥

⇔ 𝑝3 𝑥 = 𝑝2 𝑧
𝑑𝑥
𝑑𝑧

@!

= 𝑝2 𝑧
𝑑𝜙(𝑧)
𝑑𝑧

@!

Generalizing to multivariate varables 𝒙 and 𝒛, we have

log 𝑝𝒙 𝒙 = log 𝑝𝒛 𝒛 − log det
𝜕𝝓(𝒛)
𝜕𝒛

The probability mass is conserved under change of variable

39

Flow: Normalizing flow

𝑥 𝑧

Normalizing direction

Generation direction

𝑝+𝑝, 𝜙+𝜙,𝜙-𝜙.

𝜙+/,𝜙,/,𝜙-/,𝜙./,

𝜙 = 𝜙. …∘ 𝜙- ∘ 𝜙, ∘ 𝜙+

Normalizing flow 𝝓; 𝑥
• 𝝓;: an invertible, differentiable function
• 𝑝D 𝒙 : real data
• 𝑝C(𝒙): prior, e.g. Gaussian 𝑝.

log 𝑝;G! 𝒙 = log 𝑝; 𝒙 − log det
𝜕𝝓; 𝒙
𝜕𝒙

, 𝑡 = 1,2…𝑇

Design the layers 𝜙; in a way that is invertible and easy to compute det H𝝓& 𝒙
H𝒙

,
e.g., upper triangular

…

…

40

Neural ODE: Continuous normalizing flow [1]

𝑥 𝑧

Normalizing direction

Generation direction

𝑝+𝑝, 𝜙+𝜙0𝜙01*0𝜙,

𝜙+/,𝜙0/,𝜙01*0/,𝜙,/,

𝜙 = 𝜙,…∘ 𝜙01*0 ∘ 𝜙0 ∘ ⋯𝜙+

𝑝,

Making the layers 𝜙0 continuous w.r.t. 𝑡

X
𝑑𝝓;(𝒙)
𝑑𝑡 = 𝒗;(𝜙; 𝒙 ; 𝜃)

𝝓C 𝒙 = 𝒙

• The flow 𝝓; is an transformation on the variable 𝒙 at layer 𝑡 ∈ 0,1 .
• 𝒗; ⋅, 𝜃 is a field that determines the dynamics of the flow 𝝓; w.r.t. 𝑡.
• The flow 𝜙; 𝒙 uniquely defines a probability density path 𝑝; 𝒙 = 𝜙; ∘

𝜙;@9; ∘ ⋯ ∘ 𝜙C	𝑝C 𝒙 = 𝜙; 𝑝C 𝒙

…

…

…

…

[1] Chen, Ricky TQ, et al. "Neural ordinary differential equations." NeurIPS 2018

Vector field 𝒗0(𝒙; 𝜃) flow 𝝓0

determines
Probability path 𝑝0 = [𝜙0]∗𝑝+

generates

41

Neural ODE: Continuous normalizing flow, learning

𝑥 𝑧

Normalizing direction

Generation direction

𝑝+𝑝, 𝜙+𝜙0𝜙01*0𝜙,

𝜙+/,𝜙0/,𝜙01*0/,𝜙,/,

𝜙 = 𝜙,…∘ 𝜙01*0 ∘ 𝜙0 ∘ ⋯𝜙+

𝑝,

Making the layers 𝜙0 continuous w.r.t. 𝑡

…

…

…

…

[1] Chen, Ricky TQ, et al. "Neural ordinary differential equations." Advances in
neural information processing systems 31 (2018).

How to learn 𝒗; ⋅; 𝜃 such that it can transform a prior distribution 𝑝C 𝒙
to a target distribution 𝑝9:;: 𝒙 specified by samples 𝒙))+!, ?

Adjoint method (simulation-based): generalizing gradient descent,
where the gradient w.r.t. 𝜃 is another ODE from 𝑡 = 1 to 𝑡 = 0.

It is computationally expensive!

X
𝑑𝝓;(𝒙)
𝑑𝑡 = 𝒗;(𝜙; 𝒙 ; 𝜃)

𝝓C 𝒙 = 𝒙

42

Flow matching [1]

𝑥 𝑧

Normalizing direction

Generation direction

𝑝+𝑝, 𝜙+𝜙0𝜙01*0𝜙,

𝜙+/,𝜙0/,𝜙01*0/,𝜙,/,

𝜙 = 𝜙,…∘ 𝜙01*0 ∘ 𝜙0 ∘ ⋯𝜙+

𝑝,

Making the layers 𝜙0 continuous w.r.t. 𝑡

…

…

…

…

[1] Lipman, Yaron, et al. "Flow matching for generative modeling." ICLR 2022

𝐿JK 𝜃 = 𝔼;,6(𝒙 𝒗; 𝜙; 𝒙 ; 𝜃 − 𝑢; 𝒙 "

Given a target path 𝑝; 𝒙 and a corresponding vector field 𝑢; 𝒙 , we can directly regressing:

X
𝑑𝝓;(𝒙)
𝑑𝑡 = 𝒗;(𝜙; 𝒙 ; 𝜃)

𝝓C 𝒙 = 𝒙

The problem is that we only have data 𝒙))+!, and do not have 𝑝; 𝒙 nor 𝑢; 𝒙 .

43

Flow matching

ℒLJK(𝜃) = 𝔼;∼M C,! ,𝒙3~6&'('(𝒙3),3∼6(𝒙|𝒙3 𝑣; 𝒙; 𝜃 − 𝑢; 𝒙|𝒙! "

Proposition: ∇(ℒJK 𝜃 = ∇(ℒLJK 𝜃

Vector field 𝒖0(𝒙|𝒙𝟏) flow 𝝍0

determines
probability path 𝑝$ 𝒙 𝒙& = 𝝍$ ∗𝑝* 𝒙

generates

We consider 𝑝$ 𝒙 𝒙& , where 𝒙& ∼ 𝑝+,$,(𝒙)

𝑝$ 𝒙 = 7𝑝$ 𝒙 𝒙& 𝑝+,$, 𝒙& 𝑑𝒙&

The target distribution 𝑝0 𝒙 is a weighted sum of
the conditional distribution 𝑝0 𝒙 𝒙,

𝒖$ 𝒙 = 7𝒖$ 𝒙 𝒙&
𝑝$ 𝒙 𝒙& 𝑝+,$, 𝒙&

𝑝$ 𝒙
𝑑𝒙&

The target vector field 𝒖0 𝒙 is a weighted sum of
the conditional vector field 𝒖0 𝒙 𝒙,

44

Flow matching

We can then explicitly design the vector field 𝒖;(𝒙|𝒙!), e.g., using optimal transport (OT):

𝒖0(𝒙|𝒙,)𝝐% 𝒙 0 ; 𝑡

Generative models

45

Maximum
likelihood

VAE

Diffusion
models Flow

Energy-based
modelsGAN

Information (KL-
divergence)

• Generative models
• VAE
• GAN
• Energy-based models
• Diffusion models
• Flows

• Application of diffusion models
• Image, video, and shape generation
• Simulation
• Inverse design/inverse problem
• Control/planning

47

Outline

Images and videos generated by diffusion models:

By DallE 2 [1]

48

Application 1.1: image and video generation

Text to video generation by Sora [2]

[1] Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip
latents." arXiv preprint arXiv:2204.06125 1.2 (2022): 3.
[2] OpenAI team. “Video generation models as world simulators”, 2024

49

Application 1.2: 3D shape generation

By MeshDiffusion [1]
[1] Liu, Zhen, et al. "Meshdiffusion: Score-based generative 3d mesh modeling." ICLR 2023
[2] Liu, Zhen, et al. "Ghost on the Shell: An Expressive Representation of General 3D
Shapes." ICLR 2024

By G-Shell [1]

ut: original state（状态）of the system. Can be a graph (e.g., mesh, particle-based systems,
molecules), a tensor, or an infinite-dimensional function 𝑢(𝑡, 𝑥) as solution to a PDE

u0 u1 u2 uT…

𝑎: static parameters（静态参数） of the system that does not change with time
 (e.g. parameters of PDE, spatially varying diffusion coefficient)

PDE: partial differential equation
ODE: ordinary differential equation

: boundary condition（边界条件） of the system

: neural surrogate models（神经网络代理模型）

?

Goal: learn the mapping 𝑓(from 𝑢; to 𝑢;G!:

𝑚C, 𝑎, 𝜕𝕏 𝑚!, 𝑎, 𝜕𝕏 𝑚", 𝑎, 𝜕𝕏 𝑚D@!, 𝑎, 𝜕𝕏

𝑚$: external control（外界控制）

𝑙𝑜𝑠𝑠 = 𝔼 𝑀𝑆𝐸 𝑓(𝑢; , 𝑢;G!

50

Task 2: (Learning) simulation

u0 u1 u2 uT…

𝑚C, 𝑎, 𝜕𝕏 𝑚!, 𝑎, 𝜕𝕏 𝑚", 𝑎, 𝜕𝕏 𝑚D@!, 𝑎, 𝜕𝕏

ut: original state of the system. Can be an infinite-dimensional function 𝑢(𝑡, 𝑥)
 as solution to a PDE, or a graph (e.g., mesh, particle-based systems, molecules)

𝑎: static parameters（静态参数）of the system that does not change with time
 (e.g. parameters of PDE, spatially varying diffusion coefficient)

: boundary condition（边界条件）of the system

: neural surrogate models

𝑚$: external control（外界控制）

?

Objective[u[0,T], m[0,T]]Optimize the control and design variables

51

inverse design
（反向设计）

control（控制）

Tasks 3 & 4: Inverse design, inverse problem, and control

52

• Inverse design: boundary 𝜕𝕏, initial condition 𝑢C,	parameter 𝑎 to optimize design objective:
plane design, rocket shape, underwater robot shape

• Inverse problem : infer initial condition 𝑢C	or parameter 𝑎 to match prediction with observation

• Control：optimize control 𝑚;	to optimize control objectives: controlled nuclear fusion, robotics

Tasks 3 & 4: Inverse design, inverse problem, and control

53

For simulation（仿真）：

[1] Cachay, Salva Rühling, et al. "DYffusion: A Dynamics-informed Diffusion Model for
Spatiotemporal Forecasting." NeurIPS 2023, arXiv preprint arXiv:2306.01984 (2023).

Learn 𝑃 𝑢[,,.]|𝑢+ :

Application 2.1: Simulation for PDE

54

Physics-informed diffusion models:

Key idea: using the PDE residual as additional term for the objective 𝐽(𝑥).

[1] Shu, Dule, Zijie Li, and Amir Barati Farimani. "A physics-informed diffusion model for
high-fidelity flow field reconstruction." Journal of Computational Physics 478 (2023):
111972.

Application 2.2: Physics-informed simulation

@𝒙 4 = argmin𝒙 𝐸" 𝒙; 𝑡 + 𝒥 𝒙

Equation loss

55

Application 2.3: Molecular dynamics simulation [1]

[[1] Wu, Fang, and Stan Z. Li. "DIFFMD: a geometric diffusion
model for molecular dynamics simulations." AAAI 2023

Application 3.1: Inverse problem

56

Given sparse observations, infer the full state, or parameters 𝑎

Holzschuh, Benjamin, Simona Vegetti, and Nils Thuerey. "Solving Inverse
Physics Problems with Score Matching." NeurIPS 2023

𝑈[+,.]: state sequence

𝛾: boundary condition

?

Objective
Optimize the design variables

?

Treat all the variables as a single variable 𝑈 4,S , 𝛾 and learn to generate
simultaneously

57

Application 3.2: inverse design

58

Application 3.2: Compositional inverse design: definition

Given objective 𝐽 𝑈 𝛾 , 𝛾 , find design parameters 𝛾 that minimize 𝐽, where
the parameters 𝛾 and/or the state 𝑈 are more complex than in training.

For example:
Training: we only see how the fluid interacts with
each part of the airplane

Test: design the whole airplane shape

Application 3.2: CinDM method [1] Wu, Tailin, et al. “Compositional Generative Inverse Design.”
ICLR 2024 spotlight

decreasing 𝐽

𝑈[",$]: state sequence
𝛾: boundary condition

Training: only learn 𝐸& Inference: have an additional objective 𝐽

59

In inference, can also compose
multiple 𝐸(on subsets of variables

Training: consider a single airfoil interacting with the air flow

Inference: consider multiple airfoils, maximize life-to-drag ratio:（= '()*
+,-.

）

Compositional design results of our method in 2D airfoil generation.
Each row represents an example. We show the heatmap of velocity in
horizontal and vertical direction and pressure in the initial time step,
inside which we plot the generated airfoil boundaries.

Example of Lily-Pad simulation

60

Application 3.2: CinDM method, part-to-whole generalization

Our model discovers formation flying（编队飞行）
• Reducing the drag by 53.6%
• increasing the lift-to-drag ratio by 66.1%

61

Application 3.2: CinDM method, part-to-whole generalization

62

Application 3.3: Protein design

[1] Watson, Joseph L., et al. "De novo design of protein structure and
function with RFdiffusion." Nature 620.7976 (2023): 1089-1100.

De novo protein design [1]:

63

Application 4.1: Planning [1]

For agent interacting with an environment with action sequence 𝑎; , envionrment state 𝑠; :

[1] Janner, Michael, et al. "Planning with diffusion for flexible
behavior synthesis." ICML 2022

64

Application 4.2: Diffusion Policy [1]

For agent interacting with an environment with action sequence 𝑎; , envionrment state 𝑠; :

[1] Chi, Cheng, et al. "Diffusion policy: Visuomotor policy
learning via action diffusion." arXiv preprint
arXiv:2303.04137 (2023).

65

Other applications
• Algorithm: Diffusion models as plug-and-play priors, NeurIPS 2022
• Finetuning: ControlNet: Adding Conditional Control to Text-to-Image Diffusion Models
• Inpainting: RePaint: Inpainting using Denoising Diffusion Probabilistic Models
• Graph generation: Autoregressive Diffusion Model for Graph Generation, ICML 2023
• Antibody generation: Antigen-Specific Antibody Design and Optimization with Diffusion-Based

Generative Models for Protein Structures, NeurlPS 2022
• Material generation: Crystal Diffusion Variational Autoencoder for Periodic Material Generation,

ICLR 2022
• Composing video sequences: Synthesizing Long-Term Human Motions with Diffusion Models via

Coherent Sampling
• Point cloud generation: Point-E: A System for Generating 3D Point Clouds from Complex Prompts

Faster diffusion (1-8 steps):
• Progressive distillation for fast sampling of diffusion models, ICLR 2022
• On distillation of guided diffusion models, CVPR 2023
• SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two Seconds, NeurIPS 2023

https://arxiv.org/abs/2206.09012
https://arxiv.org/abs/2302.05543
https://arxiv.org/abs/2201.09865
https://proceedings.mlr.press/v202/kong23b.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/3fa7d76a0dc1179f1e98d1bc62403756-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/3fa7d76a0dc1179f1e98d1bc62403756-Abstract-Conference.html
https://arxiv.org/abs/2110.06197
https://arxiv.org/abs/2308.01850
https://arxiv.org/abs/2308.01850
https://arxiv.org/abs/2212.08751
https://arxiv.org/abs/2202.00512
https://arxiv.org/abs/2210.03142
https://snap-research.github.io/SnapFusion/

• Generative models
• VAE
• GAN
• Energy-based models
• Diffusion models
• Flows

• Application of diffusion models
• Image, video, and shape generation
• Simulation
• Inverse design/inverse problem
• Control/planning

66

Summary

67

Useful materials

• Diffusion models (DDPM): "Denoising diffusion probabilistic
models." NeurIPS 2020

• DDPM tutorial: https://lilianweng.github.io/posts/2021-07-11-diffusion-
models/

• DDPM code: https://github.com/lucidrains/denoising-diffusion-pytorch
• Flow matching: "Flow matching for generative modeling." ICLR 2022

https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://github.com/lucidrains/denoising-diffusion-pytorch
https://arxiv.org/abs/2210.02747

